Mild induced hypertension improves blood flow and oxygen metabolism in transient focal cerebral ischemia.

نویسندگان

  • Hwa Kyoung Shin
  • Masaki Nishimura
  • Phillip B Jones
  • Hakan Ay
  • David A Boas
  • Michael A Moskowitz
  • Cenk Ayata
چکیده

BACKGROUND AND PURPOSE In focal ischemic cortex, cerebral blood flow autoregulation is impaired, and perfusion passively follows blood pressure variations. Although it is generally agreed that profound hypotension is harmful in acute stroke, the hemodynamic and metabolic impact of increased blood pressure on the ischemic core and penumbra are less well understood. We, therefore, tested whether pharmacologically induced hypertension improves cerebral blood flow and metabolism and tissue outcome in acute stroke using optical imaging with high spatiotemporal resolution. METHODS Cerebral blood flow, oxyhemoglobin, and cerebral metabolic rate of oxygen were measured noninvasively using simultaneous multispectral reflectance imaging and laser speckle flowmetry during distal middle cerebral artery occlusion in mice. Hypertension was induced by phenylephrine infusion starting 10 or 60 minutes after ischemia to raise blood pressure by 30% for the duration of ischemia; control groups received saline infusion. RESULTS Mild induced hypertension rapidly increased cerebral blood flow, oxyhemoglobin, and cerebral metabolic rate of oxygen in both the core and penumbra and prevented the expansion of cerebral blood flow deficit during 1 hour distal middle cerebral artery occlusion. Induced hypertension also diminished the deleterious effects of periinfarct depolarizations on cerebral blood flow, oxyhemoglobin, and cerebral metabolic rate of oxygen without altering their frequency. Consistent with this, mild induced hypertension reduced infarct volume by 48% without exacerbating tissue swelling when measured 2 days after 1 hour transient distal middle cerebral artery occlusion. CONCLUSIONS Our data suggest that mild induced hypertension increases collateral cerebral blood flow and oxygenation and improves cerebral metabolic rate of oxygen in the core and penumbra, supporting its use as bridging therapy in acute ischemic stroke until arterial recanalization is achieved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats

Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...

متن کامل

Effect of pentoxifylline on brain edema in a rat model of transient focal cerebral ischemia

Pervious studies have shown that pentoxifylline (PTX) has beneficial effects in reduction of stroke and brain trauma injuries in experimental animals. However, there is very little and controversial information about the effect of PTX on brain edema in cerebral ischemia. Therefore, the aim of this study was to determine the effects of different doses of PTX on brain edema and neurological m...

متن کامل

Evaluation the protective effect of aminoguanidine on cortex and striatum damage in acute phase of focal cerebral ischemia in rat

Introduction: Several studies have indicated that late treatment of aminoguanidine (AG) reduces cerebral ischemic injuries in animal models. However, the effects of early treatment of AG on cerebral ischemic damage are not well understood. This study was designed to evaluate effect of early treatment of AG on cortex and striatum injuries as well as neurological dysfunctions in transient mode...

متن کامل

Pre-Ischemic Treatment of Pentoxifylline Reduces Infarct Volumes in Transient Focal Cerebral Ischemia in the Rat

Background: Pentoxifylline (PTX) is used in human for intermittent claudication and cerebral vascular disorders including cerebrovascular dementia. It also inhibits the synthesis of tumor necrosis factor-α (TNF-α), which is believed to be neurotoxic in animal models of cerebral ischemia. The objective of this study was to examine the role of PTX on ischemia/reperfusion injures in rat model of t...

متن کامل

L-NAME and 7-Nitroindazole Reduces Brain Injuries in Transient Focal Cerebral Ischemia in Rat

Background: The role of nitric oxide (NO) of endothelial or neuronal origins in cerebral ischemia and reperfusion injuries are far from being settled, extending from being important to not having any role at all.  Objective: To investigate the role of NO of endothelial and neuronal origins in ischemia/reperfusion injuries in focal cerebral ischemia, L-NAME, a non selective NO synthase inhibitor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stroke

دوره 39 5  شماره 

صفحات  -

تاریخ انتشار 2008